resonance curve


last updated: 20040411 
A
wellknown parameter equation for this curve is the following:
Resonance occurs, when an external oscillation is exerted on a system, with a frequency
in the neighborhood of a certain resonance frequency. An example is direct monochromatic light
falling onto an atom. The intensity of the radiation,
emitted by the atom has the form of a resonance curve, as function of the
difference in frequency ^{1)} (between external and
resonance frequency).
One specimen of this class has been given special
attention
since the 17th century. We're talking about the versiera, which
is constructed as follows.
Given a circle and
two parallel lines k and l. Line k is a tangent to this circle in point O, l in point A.
Construct a line bundle m through O. This line m cuts the circle in Q, line l in R. Make
now a line n parallel to l and m through Q. Then the point P of the curve is found by
letting down a line down on n from point R.
In other words: P has the xcoordinate of point R and the ycoordinate of point Q.
It may be clear that not all resonance curves obey this construction rule.
The curve is:
The curve has been studied by Fermat (1666) and Grandi (1703).
The
Italian female mathematician Maria Gaetana Agnesi (17181799) wrote about the curve in
her book 'Instituzioni analitiche (ad uso della gioventu italiana)' (1748).
She used the Latin word 'versoria' for the curve, meaning
'a rope that turns a sail'. This 'versoria' became the the Italian word 'la versiera',
which means 'free to move'. But the translator of the book, the Englishman John Colson,
translated the word to 'l'aversiera', the Italian word for 'witch'. So nowadays the
curve is known as versiera or witch of Agnesi.
Other names referring to Agnesi are: Agnesi's cubic
and (in French) agnésienne.
The curve is also a probability density function with the name of the Cauchy
distribution.
The integral of the function is the arctangent.
notes
1) Given is a linear system, i.e. the system is being described by a
linear differential equation. Further, the external force fluctuates in the form of a
sine. Remember that the intensity of the light is proportional to the square amplitude.
Then the given formula follows directly.
Wichmann 1967 p.109
../literature.html 